Achieving ICME with Multiscale Modeling: The Effects of Constituent Properties and Processing on the Performance of Laminated Polymer Matrix Composite Structures
نویسندگان
چکیده
Integrated computational materials engineering (ICME) is a useful approach for tailoring the performance of a material. For fiber-reinforced composites, not only do the properties of the constituents of the composite affect the performance, but so does the architecture (or microstructure) of the constituents. The generalized method of cells is demonstrated to be a viable micromechanics tool for determining the effects of the microstructure on the performance of laminates. The micromechanics is used to predict the inputs for a macroscale model for a variety of different fiber volume fractions, and fiber architectures. Using this technique, the material performance can be tailored for specific applications by judicious selection of constituents, volume fraction, and architectural arrangement given a particular manufacturing scenario.
منابع مشابه
Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach
In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...
متن کاملMultiscale Analysis of Transverse Cracking in Cross-Ply Laminated Beams Using the Layerwise Theory
A finite element model based on the layerwise theory is developed for the analysis of transverse cracking in cross-ply laminated beams. The numerical model is developed using the layerwise theory of Reddy, and the von Kármán type nonlinear strain field is adopted to accommodate the moderately large rotations of the beam. The finite element beam model is verified by comparing the present numeric...
متن کاملOn the flexural properties of multiscale nanosilica/E-glass/epoxy anisogrid-stiffened composite panels
In the present study, multiscale nanosilica/E-glass/epoxy anisogrid composite panels were investigated for flexural properties as a function of nanosilica loading in the matrix (0, 1, 3 and 5 wt.%). The surface of the silica nanoparticles was firstly modified with 3-glycidoxypropyltrimethoxysilane (3-GPTS). The fourier transform infrared (FTIR) spectroscopy revealed that the organic functional ...
متن کاملOpen-Hole Size and Thermal Cycling Effects on Mass Loss and Surface Degradation of Polymer Matrix Composites
Degradation is a common problem for polymer matrix composites (PMCs) under low thermal cycling conditions. This paper investigates the effects of low thermal cycling on total mass loss (TML) and surface degradation of PMCs. Unnotched and open-hole specimens were weighed before and after low thermal cycling. The total mass loss and surface degradation of the specimens were studied over 250 cycle...
متن کاملElastic modulus measurement of polymer matrix nano-composites reinforced by platelet nano-clays
Polymer-clay nano-composite materials, in which nano-meter thick layers of clay dispersed in polymer matrix, have generally higher mechanical properties than normal polymeric materials. A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical r...
متن کامل